On Estimating Mutual Information for Feature Selection

نویسندگان

  • Erik Schaffernicht
  • Robert Kaltenhaeuser
  • Saurabh Shekhar Verma
  • Horst-Michael Groß
چکیده

Mutual Information (MI) is a powerful concept from information theory used in many application fields. For practical tasks it is often necessary to estimate the Mutual Information from available data. We compare state of the art methods for estimating MI from continuous data, focusing on the usefulness for the feature selection task. Our results suggest that many methods are practically relevant for feature selection tasks regardless of their theoretic limitations or benefits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

Estimating Mutual Information Using Gaussian Mixture Model for Feature Ranking and Selection [IJCNN2046]

Feature selection is a critical step for pattern recognition and many other applications. Typically, feature selection strategies can be categorized into wrapper and filter approaches. Filter approach has attracted much attention because of its flexibility and computational efficiency. Previously, we have developed an ICA-MI framework for feature selection, in which the Mutual Information (MI) ...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010